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Abstract

Comparing datasets, that is, sets of numbers in context, is a critical skill in higher order cogni-

tion. Although much is known about how people compare single numbers, little is known about

how number sets are represented and compared. We investigated how subjects compared datasets

that varied in their statistical properties, including ratio of means, coefficient of variation, and

number of observations, by measuring eye fixations, accuracy, and confidence when assessing dif-

ferences between number sets. Results indicated that participants implicitly create and compare

approximate summary values that include information about mean and variance, with no evidence

of explicit calculation. Accuracy and confidence increased, while the number of fixations

decreased as sets became more distinct (i.e., as mean ratios increase and variance decreases), dem-

onstrating that the statistical properties of datasets were highly related to comparisons. The discus-

sion includes a model proposing how reasoners summarize and compare datasets within the

architecture for approximate number representation.
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1. Introduction

Comparing datasets is a critical skill in mathematics, science, and everyday life. People

regularly are faced with decisions to compare the health efficacy of multiple treatments,

the relative costs of goods and services, and the best choices for investments. All can be

considered informal comparisons of data, or numbers in context. For example, how does

a consumer determine that a particular store has lower prices than another store? In a

comparison of ten products, a shopper finds that seven of these ten are more expensive at
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Store A than Store B. Although a statistically inclined shopper could in theory perform a

formal comparison such as a t test, it seems more likely that she would rely on an infor-

mal comparison.

Although there has been a considerable interest in the mechanisms underlying number

comparison (see Dehaene, 2009 for a review), there has been little research investigating

how people compare sets of numbers, despite evidence of its value in statistics and calls

for increased focus on teaching students to compare groups of data (Konold & Pollatsek,

2002). In the current article, we investigate the comparison of number sets and propose a

model of how number sets are represented and compared that builds upon our knowledge

of number representation and comparison.

1.1. Number comparison

Numbers are represented both as approximate magnitudes with error variance and as ver-

bal categories (i.e., exact representations; Dehaene, 2009). That is, given the number “12,”

we represent both the verbal category “twelve” (an exact value) and an activation on a loga-

rithmically scaled mental number line that peaks around 12 in the approximate number

system, and that has constant variability1 (Dehaene, 2009; Feigenson, Dehaene, & Spelke,

2004; Opfer & Siegler, 2012). Under this model of logarithmic representation with constant

variability, differences between single-digit numbers are detected more quickly and accu-

rately as the ratio of the difference between numbers increases (Dehaene, 2009). For exam-

ple, when asked to find the larger number, reaction times are faster and evaluations are

more accurate when comparing 3 and 9 (1:3 ratio of numbers) than when comparing 9 and

10 (9:10 ratio of numbers). This distance effect is evidence that numerical quantities are

compared using approximate representations. Evidence for a distance effect is consistent

across presentation formats (e.g., dots, Arabic numbers, fractions; Buckley & Gillman,

1974; Dehaene, 2001; Moyer & Landauer, 1967; Sprute & Temple, 2011) and across age of

participants (Feigenson et al., 2004).

Comparisons between multi-digit numbers (e.g., 63 and 72) also demonstrate a distance

effect (Dehaene, Dupoux, & Mehler, 1990; Korvorst & Damian, 2008; Nuerk, Weger, &

Willmes, 2001; Nuerk, Kaufmann, Zoppoth, & Willmes, 2004). However, two- and three-

digit numbers produce distance effects for each place value unit (i.e., tens versus ones;

Korvorst & Damian, 2008; Nuerk et al., 2001). Although the highly accurate and quick

responses suggest a magnitude representation, the effect of position of specific values

(e.g., hundreds place) suggests that category information about place values was more

diagnostic of true differences (Korvorst & Damian, 2008). Eye tracking results demon-

strated that there were more fixations overall when numbers were closer together and

when there was incompatibility between places (e.g., 47 vs. 51, a comparison of two-two-

digit numbers, in which one-two-digit number has a larger number in the tens column,

but the other one has a larger number in the ones column; Moeller, Fischer, Nuerk, &

Willmes, 2009), suggesting that more fixations increase the amount of diagnostic informa-

tion about each number.
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1.2. Comparing number sets

We suggest that when comparing number sets, reasoners create approximate summaries

of the statistical properties of these sets, including unique characteristics of sets unavail-

able in individual number comparisons, such as means and variances (Masnick & Morris,

2008). Recall that approximate numbers are activation functions in which activation lev-

els are highest at the position on a logarithmically scaled number line corresponding to

the number being represented and decrease as the distance from the number increases

(e.g., Dehaene, 2009; Grossberg & Repin, 2003). It is possible that summaries emerge

because the activation of multiple approximate magnitudes for each member of the set

results in a summary activation area (see Fig. 1). In other words, if each number is repre-

sented as an activation around a range of values, an approximation of relative means

could emerge from the degree of overlap between two or more values and approximate

variance could emerge from spread of values within the set. Sets with large mean differ-

ences and low variance would constitute high-contrast sets, in that they would create

summary activation areas that would be far apart on a number line. Conversely, sets with

low mean differences and high variance would constitute low-contrast sets that would be

close together on a number line and may overlap. If the summary representations are

compared like single number representations, then a distance effect for sets would be

expected, and high-contrast sets would be associated with faster, more accurate compari-

sons and low-contrast sets with slower, less accurate comparisons.

There is evidence of summarizing (i.e., averaging over) sets in other domains (Ariely,

2001; Chong & Treisman, 2003, 2005). When presented with sets of dots of different

sizes, adult participants erroneously “recalled” average-sized circles values not in the ori-

ginal array more frequently than actual members of the original set (Ariely, 2001; Chong

& Treisman, 2003, 2005). Similarly, adults “summarized” sets of line segments and con-

sumer information showing sensitivity to means and variance (Obrecht, Chapman, &

Gelman, 2007; Trumpower & Fellus, 2008; Vickers, Burt, Smith, & Brown, 1985). Van

Opstal, de Lange, and Dehaene (2011) demonstrated that participants could approximate

means and sums for small number sets. In each case, these summaries appeared to arise

without deliberation.

1.3. Current experiment

We asked participants to compare sets of data that varied systematically in the mean

ratio, relative variance, and number of observations. We recorded eye fixations, accuracy,

and confidence in comparisons. Eye tracking studies have demonstrated that longer fixations

and a larger number of fixations are often related to difficulty in solving problems (Reichle,

Pollatsek, Fisher, & Rayner, 1998). For example, when reading technical passages, eyes

frequently move back to text that has been previously observed, suggesting scanning for

additional information related to goal achievement (e.g., comprehension; Rayner &

Pollatsek, 1989). Recent work suggests a similar effect in comparing the sizes of two sets of

dots: the ratio of set sizes affected eye fixation duration (Libertus & Libertus, 2011).
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The goal of this experiment was to investigate how number sets are compared using eye

fixations, accuracy, and confidence measures. We investigated three questions. One, are fea-

tures of datasets such as mean and variance related to the accuracy, confidence, and number

(a) (b)

(d)

(c)

Fig. 1. Number representation. Note that the x-axis is log scaled following Dehaene (2009). Panels a and b

display two sets of two numbers represented logarithmically with constant variability (above) and summary

values represented as secondary activations (below). The numbers in set (a) are close together and result in a

summary value with a high peak (approximate mean) and narrow activation area (approximate variance). The

numbers in set (b) are farther apart than those in set (a) and result in a summary value with a low peak

(approximate mean) and wide activation area (approximate variance). Figure (c) displays a dataset with high

ratio of means and low variance—that is, high-contrast sets. Figure (d) displays a dataset with low ratio of

means and high variance—that is, low-contrast sets. If difference is detected by comparing distance, then the

sets in (c) should be compared more accurately than the sets in (d).

4 B. J. Morris, A. M. Masnick / Cognitive Science (2014)



of fixations during comparisons? Two, is there evidence that participants look at only part

of each number instead of the whole number? Three, are participants more likely to switch

visual attention between low-contrast sets as compared to high-contrast sets?

2. Method

2.1. Participants

Participants were 24 university students (21 female), who received course credit for

their participation. Eight participants were wearing either contact lenses or glasses. Those

wearing glasses removed their glasses and reported no difficulties seeing the number sets.

2.2. Materials

Participants saw 36 numerical sets (3 of each type) with the following properties: (a)

either 4 or 8 observations per set, (b) ratio of means of either 2:3, 4:5 or 9:10, and (c)

coefficient of variation in either .10 or .20 of the mean. All numbers in the datasets were

3-digit numbers. See Table 1 for examples. For each of the 12 possible combinations of

mean difference, coefficient of variation, and sample size, there were three trials with

datasets meeting these specifications. Thus, there were a total of 36 experimental trials in

which these characteristics were varied. Numbers were presented in 42-point Times New

Roman font and each column of numbers was centered within two columns in a Power

Point slide. Within each number, an extra space was placed between the hundreds, tens,

and ones places and 1.5 spacing was used between numbers in each column.

Table 1

Example dataset

LEFT RIGHT

699 911

820 777

660 733

781 868

Note. These datasets are low-contrast sets; they have means in the

ratio 9:10, with a low coefficient of variation, and of course four num-

bers per set. We computed the coefficient of variation as a standard

deviation that was either .10 or .20 the value of each column’s mean.

Because the two column means were not identical, the variances were

not identical. However, a follow-up study with nine subjects in which

the variances were identical in each column (the average of the .10 or

the .20 coefficients of variation) led to the same patterns of results, in

which the participants responded to mean ratio and variance in their

assessment of confidence, and the same main effects held for accuracy,

confidence, and fixations.
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2.3. Procedure

A Tobii T-60 eye tracker was used for data collection. Participants were seated in front

of a 17-inch monitor and adjusted position until approximately 70 cm from the monitor

(monitor provided this information in real time to ensure distance precision). A nine-point

calibration was performed and no participants required recalibration. After completing the

calibration, participants were instructed that the session would begin. Participants were

given the following instructions: You will be shown the results from a series of golf
drives (a single golf shot to achieve maximum distance). Each slide will show how far a
golfer hit a series of balls from one of two tees (LEFT or RIGHT). Your job is to tell me
which golfer, on average, hit the ball FARTHER (all drives were measured in feet).
Alternative instructions were piloted (e.g., Which is the better golfer? The best golfers
can hit the ball the farthest. Based on these numbers, which golfer would you choose for
your team for an upcoming tournament?). These alternative wordings led to response

patterns the same as those reported below.

Next, participants were given information about the confidence scale: After you make
your choice, I will ask you how sure you are using the scale in front of you. The scale goes
from 1 to 4. A 1 indicates that you were NOT SO SURE about which golfer hit the ball far-
ther and a “4” indicates that you were TOTALLY SURE that one golfer hit the ball farther.
I will ask you: How sure are you that this golfer hit this ball farther? Please say a number.

On each trial, participants first saw a fixation slide in which a + was placed in the cen-

ter of the screen for 1 s. Then participants saw a data slide consisting of two sets of data

(marked LEFT and RIGHT and positioned on the left or right side of the screen). They

were then asked to determine which golfer, on average, hit the ball farther and how confi-

dent they were in this difference (using the scale positioned in front of them). Datasets

were presented in blocks by sample size (4 or 8 observations) and each block was pre-

sented in one of two counterbalanced orders. Thus, the overall presentation of blocks was

randomized into one of the four possible orders of data presentation.

2.4. Defining areas of interest

Areas of interests (AOIs) were defined around stimuli before data collection. An AOI

was defined around the hundreds, tens, and ones columns and around each three-digit

number. The number of fixations and duration of fixations occurring within each AOI

was automatically recorded.

3. Results

3.1. Accuracy

Participants were asked to state which column had data from a golfer who hit a golf

ball farther. Responses were considered accurate when participants chose the column with
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the higher mean (95.5% accurate across all trials). A 3-way ANOVA with mean ratio (2:3;

4:5; 9:10), coefficient of variation (.10 of mean; .20 of mean), and sample size (4, 8) as

repeated measures independent variables was run, using accuracy as the dependent mea-

sure (0-3 possible correct answers for each combination of these factors). The overall

accuracy rate was close to ceiling. The only effect was a main effect for mean ratio, with

lowest accuracy for 9:10 ratio (M = 2.79, SD = .23), and higher accuracy for 4:5

(M = 2.90, SD = .18) and 2:3 mean ratios (M = 2.97, SD = .11), F (2, 22) = 10.76,

p = .001, partial g2 = .50. Post hoc paired t tests, indicate a significant difference

between accuracy for 9:10 ratio and the two other ratios (compared with 2:3 ratio:

t(23) = 4.7, p < .001;4:5 ratio t (23) = 3.32, p = .003, respectively). The difference

between the accuracy in the 2:3 ratio and the 4:5 ratio trials was not significant No other

main effects and none of the interaction effects were significant. Inaccurate trials (39 out

of 864) were eliminated from further analyses.2

3.2. Confidence

In addition to accuracy, participants noted their confidence in their judgments of which

golfer was better on a four-point scale from 1 (not sure) to 4 (totally sure). A 3-way

ANOVA similar to the one described in the previous paragraph was run with confidence as

the dependent measure. There was a main effect of mean ratio; participants had more

confidence on the 4-point scale when the means were in a 2:3 ratio (M = 3.56, SD = .24),

than in 4:5 ratio (M = 3.30, SD = .32), or in 9:10 ratio (M = 2.49, SD = .29),

F (2, 22) = 210.19, p < .001, partial g2 = .95. Post hoc paired t tests indicate there were

significant differences in confidence between all levels (all ps < .001). A main effect of

coefficient of variation showed that participants were more confident when the coefficient

of variation was .10 (M = 3.28, SD = .29) than when it was .20 (M = 2.94, SD = .27),

F (1, 23) = 50.03, p < .001, partial g2 = .69. Finally, there was an interaction between

mean ratio and coefficient of variation, such that when the means were very different

(high contrast), there was less difference in confidence based on coefficient of variation,

F (2, 23) = 9.25, p = .001, partial g2 = .46. No other main effects or interactions

approached significance.

3.3. Eye fixation counts

We looked at the behavioral measure of eye fixation counts to explore the pattern of

where people look for information in this task (see Fig. 2a and b). In a 5-way ANOVA,

mean ratio (2:3, 4:5, 9:10), coefficient of variation (.10 of mean, .20 of mean), sample

size (4, 8), side of screen data were presented on (left, right) and column (hundreds, tens,

ones) were all repeated measures independent variables, and number of fixations was the

dependent measure, with the AOI defined by each of the six columns (hundreds, tens,

ones on the left and right sides of the screen). We found main effects for all variables

except for side of screen. There were also several significant interactions. The key find-

ings are highlighted in Table 2. Data characteristics affected fixations: participants fixated
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more often before making a decision when the means were closer together, and when the

data were more variable. Not surprisingly, when there were more data points, there were

also more fixations. Finally, the most dramatic effect was that there were an average of

5.5 fixations in the hundreds column, 2.5 fixations in the tens column, and 0.5 fixations

in the ones column. Many of the interactions indicate that when low-contrast characteris-

tics are combined, there is an even larger effect; for example, there was a bigger differ-

ence in number of fixations based on coefficient of variation when the means were closer

together. Further, although there was no main effect of the side of the screen the data
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Fig. 2. (a and b) Mean fixation counts on the hundreds and tens column, on the left and right of the screen,

by ratio of means and coefficient of variation (in parentheses) with bars representing standard error of the

mean. For the sake of simplicity, we do not show fixation count in the ones column, which averaged less

than 1 in every single condition. Panel a displays results for sets of four observations. Panel b displays results

for sets of eight observations.
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were presented on, this variable did interact with several other characteristics. When the

sets were easier to distinguish (higher contrast), there tended to be more fixations on the

left side than the right, while when the data were more difficult to distinguish (lower con-

trast), the fixations were evenly distributed between sides. The first fixation was on the

left side 97% of the time, suggesting that there was less need to look back and forth as

Table 2

ANOVA explanation table

Variables F p

Effect

Size

(Partial g2) Description of Pattern

Main effects
Mean ratio 78.8 <.001 .88 More fixations with closer ratios

Coefficient of variation 56.1 <.001 .71 More fixations with greater coefficient of

variation

Sample size 44.7 <.001 .66 More fixations with 8 pairs than 4 pairs

Left/right column 2.6 .121 .10 No difference

Hundreds/tens/ones 413.9 <.001 .97 More fixations on hundreds than tens or

ones; more fixations on tens than ones

Significant 2-way interactions
Mean ratio 9 coefficient of

variation

19.6 <.001 .64 More fixations based with higher coefficient

of variation, but only when the means are

closer together

Mean ratio 9 sample size 13.2 <.001 .55 For smaller sample size, there is a bigger

difference in number of fixations based on

mean ratio

Mean ratio 9 left/right 4.1 .030 .27 With lower coefficient of variation, there are

more fixations on the left than the right.

Mean ratio 9 hundreds/tens/

ones

27.8 <.001 .85 More fixations on hundreds and tens when

the means are closer together than farther

apart

Coefficient of variation 9

left/right

5.1 .034 .18 When coeff. of variation is smaller, more

fixations on left than right; more even with

greater coefficient of variation

Coefficient of variation 9

hundreds/tens/ones

26.3 <.001 .71 Fixations on hundreds and tens more

affected by coefficient of variation than

on ones

Sample size 9 left/right 11.8 .002 .34 At sample size 8, there are more fixations on

the left; at sample size 4, it’s even

Sample size 9

hundreds/ten/ones

36.9 <.001 .77 More fixations in larger set for hundreds and

tens columns, but not ones column

Significant 3-way interactions
Mean ratio 9 sample

size 9 left/right

8.8 <.001 .64

Sample size 9 left/

right 9 hundreds/tens/ones

14.4 <.001 .57

Coefficient of variation 9

left/right 9 hundreds/tens/ones

5.6 .011 .34
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much with sets that are higher contrast. An additional ANOVA was run with fixation dura-

tion as the dependent measure, and it yielded similar pattern of results, with longer fixa-

tions on the hundreds column as compared to the tens or ones columns, when the means

were closer together, and when the coefficient of variation was greater.

3.4. Column switches

Another measure of comparison was the number of times people moved their eyes from

one data set to the other. Two research assistants examined video of eye movements and

noted how many times fixations switched either from left to right, or right to left. The two

coders agreed 92% of the time and discrepancies were resolved through discussions with

the first author. We then examined the effect of data characteristics on the frequency of

fixation switches. A mean ratio (2:3, 4:5; 9:10)9 coefficient of variation (.10 or .20 of

mean)9 sample size (4, 8) repeated measures ANOVA was conducted with the number of

fixation switches as the dependent measure. There were more fixation switches when the

means were closer (2:3 ratio: M = 3.73, SD = .51; 4:5 ratio: M = 5.29, SD = 0.85; 9:10

ratio: M = 7.26, SD = 1.10) than when they were farther apart, (F (2, 22) = 164.98,

p < .001, partial g2 = .94). Post hoc paired t tests indicate that the differences were signif-
icant between each pair of ratios (all ps < .001). There were also more fixation switches

when the coefficient of variation was larger (M = 5.78, SD = 0.78) than when it was smal-

ler (M = 5.08, SD = 0.77), (F (1, 23) = 62.64, p < .001, partial g2 = .73). Finally, there

was no main effect of sample size, but at a ratio of 9:10, there were more fixation switches

when there were four pairs of data (M = 7.62, SD = 1.63) than eight (M = 6.90,

SD = 1.02), (F (2, 22) = 3.45, p = .05, partial g2 = .24; see Fig. 3).
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Fig. 3. Number of column switches by ratio of means, coefficient of variation, and set size. Note. Error bars
represent standard error of mean.
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4. Discussion

The results strongly suggest that adult participants were comparing datasets by estimat-

ing a summary value that includes information about both means and variance of sets.

Accuracy and confidence were higher with high-contrast sets than with low-contrast sets.

These results also provided critical information about how participants compared datasets.

The number of fixations increased as set contrast decreased. Further, the number of col-

umn switches, scans back and forth between data columns, increased as set contrast

decreased. These additional fixations were focused on additional set information, com-

monly the tens column and fixations between individual set values (i.e., whole numbers).

It is reasonable to interpret these fixations as seeking additional set details before produc-

ing a comparison. When the estimates yield diagnostic summary values and are sufficient

to differentiate sets (e.g., higher contrast sets) then there is no need for further action.

But when estimates yield non-diagnostic summary values (e.g., lower contrast sets), addi-

tional processing beyond the initial estimate occurs. The results of this experiment dem-

onstrate that these additional processes involve attending to new information (e.g., tens

values) and making comparisons between whole numbers in each set. Finally, confidence

was lower when the number of fixations increased, although both are likely artifacts of

the set properties.

Our results are consistent with previous research demonstrating that number compari-

sons are made on the basis of approximate magnitudes rather than exact values. Our

results extend these findings in that differences between sets are detected quickly through

the comparison of approximate summary values. Although mean differences appear to be

the primary factor in the summary representations (mean differences demonstrated the

largest main effect sizes), set variance consistently influenced results indicating that both

properties were included in the summary representations.

The results also provide some evidence that multi-digit numbers are decomposed dur-

ing comparisons. Eye fixations demonstrated that participants attended most frequently to

the hundreds column and attention to other place values increased as the contrast between

sets decreased (similar to Moeller et al., 2009). Finally there was an increase in the num-

ber of column switches as the contrast between sets decreased, consistent with a search

for additional information. This finding is similar to results from reading literature in

which regressions (i.e., visual scans of previously scanned information; Rayner & Poll-

atsek, 1989) are an index of comprehension difficulty and suggests an index of the level

of comparison difficulty.

4.1. A model of summary representation

We suggest that multiple numbers might be compared in two steps: (a) by creating a

summary value for each set via summary activation areas along the number line and (b)

comparing these summary values. Summary values appear to include information about

means and variance. Each individual value creates an activation area, and the overlap

between these areas would summarize a set of numbers. The resulting activation areas
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would implicitly represent means and variance differently. Means would be represented

“vertically”—in a perfectly symmetrical set, the mean would be represented as the high-

est peak in a normal curve (see Fig. 1). Variance would be represented “horizontally”

measured as spread of activation across the number line. The difference between sum-

mary values would be compared on a number line, similar to the comparisons between

single values (Diester & Nieder, 2007).

Our results allow us to evaluate and increase the detail in our model. As outlined

above, the process of creating summary values and comparison is initially sequential

(Dehaene, 2009); however, as more detail is required (e.g., given low-contrast sets or

need for accuracy), additional information may be added to the initial estimates. The

eye fixation data demonstrated that first fixations were most commonly directed to the

hundreds column of each set. If the resulting scan produces two activation areas that

are clearly different (i.e., far apart on the number line), then a comparison can be

made without further information. Comparisons between high-contrast sets (e.g., sets

with 2:3 ratio of mean difference) were associated with fewer fixations than compari-

sons between low-contrast sets. If the initial approximate representation is not clearly

different, then more information is added to the initial estimate. Subsequent scans are

more likely to include additional information not gathered in the initial search, such as

looking at the tens places, or returning to numbers previously examined, in order to

create a more detailed representation for comparison. In addition to increasing the

amount of precision in the approximate representations, additional scanning may also

maintain the information already in working memory. This is consistent with evidence

from the larger number of fixations on lower contrast sets, more fixations outside of

the hundreds column, and more column switch fixations. Comparisons between sum-

mary values would produce the same types of distance effects seen in single value

comparisons in that larger differences (e.g., higher contrast sets) would be faster and

more accurate than smaller differences (e.g., lower contrast sets). Our results also sug-

gested that comparisons that were not sufficiently different triggered a search for addi-

tional information.

Our results suggest that there is no single “threshold” at which more information

would be needed. Instead, they suggest an inverse, linear relation in which the need for

information increases as the contrast between sets decreases. The results suggest the prop-

erties of sets that make comparisons relatively easy. High-contrast sets with high mean

differences and low variance are relatively easy for adults to compare accurately. Our

results also begin to suggest a threshold at which such comparisons become increasingly

difficult. When the ratio of mean differences reached 9:10, accuracy decreased and reac-

tion times increased as people sought more information before making comparisons.

Future research should further examine data characteristics that influence the threshold of

comparison. One suggestion is to examine the influence of outliers on comparisons. A

second suggestion is to examine other possible data characteristics such as skew. Future

research should also link simple comparisons to more complex cognitive operations such

as data interpretation and decision making (see Obrecht et al., 2007; Obrecht, Chapman,

& Su�arez, 2010).
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5. Conclusion

Our results demonstrate that adults compare datasets by rapidly estimating summaries

that include statistical properties of the datasets. Comparisons were not based on single val-

ues but were influenced by set means and set variance. When sets were highly distinct sub-

jects made an initial scan of the set, usually focusing on the hundreds column of each set,

and made rapid and accurate comparisons. As sets became more similar, reasoners increased

the number of scans and the type of information sought (e.g., tens column), and confidence

and accuracy decreased. Our results extend information about the cognitive architecture for

number suggesting that reasoners summarize multi-digit number sets without deliberate cal-

culation, which allows for quick and accurate comparisons when sets are distinct.
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Notes

1. We follow Dehaene (2009) in positing logarithmic number representations with

constant variability. For a contrasting view suggesting linear number representa-

tions with scalar error variance, see Leslie, Gelman, and Gallistel (2008) and Wha-

len, Gallistel, and Gelman (1999).

2. We chose to focus on only accurate trials as we were most interested in the effects

on behavior and confidence when participants were accurate. However, running

similar analyses on the complete dataset including both accurate and inaccurate

datasets yields identical patterns of significant main effects and interactions for all

of the subsequent analyses reported.
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