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Acrucial skill in scientific and everyday reasoning is the ability to interpret data. The present study examined how
data features influence data interpretation. In Experiment 1, one hundred and thirty-three 9-year-olds, 12-year-
olds, and college students (mean age 5 20 years) were shown a series of data sets that varied in the number of
observations and the amount of variance between andwithin observations. Only limited context for the data was
provided. In Experiment 2, similar data sets were presented to 101 participants from the same age groups
incrementally rather than simultaneously. The results demonstrated that data characteristics affect how children
interpret observations, with significant age-related increases in detecting multiple data characteristics, in using
them in combination, and in explicit verbal descriptions of data interpretations.

One crucial skill in scientific and everyday reasoning
is the ability to interpret data. For example, imagine
two golfers on a driving range hit three balls each.
Golfer A hits the balls 100, 130, and 125 yards,
whereas Golfer B hits the balls 250, 265, and 270
yards. If asked to predictwhich golferwould likely hit
the ball farther on the next drive, an observer would
probably pick Golfer B. It is likely that our observer
would not treat each drive as an unrelated incident
but would see each drive as one piece of data related
to a stable underlying construct (e.g., skill in driving
a golf ball). Along with this understanding is an
expectation that even when such a construct is stable,
there is variation in outcomes (i.e., exact distance of

drive). Although the mechanism causing the differ-
ence might not be clear to the observer (e.g., strength,
practice), the resulting pattern of observations sug-
gests nontrivial differences between the performan-
ces of the two golfers. Explanations for the difference
in performance (i.e., specifying causal mechanism)
would arise from a combination of the observer’s
background knowledge and the data.

Although such inferences may be trivial for adults,
children often err when making similar comparisons
(see Zimmerman, 2000, 2007, for reviews). One source
of difficulty is that children tend to rely heavily on
their domain knowledge when interpreting data,
even to the extent of ignoring disconfirming data that
conflict with their current knowledge or expectations
(e.g., Chinn & Malhotra, 2002; Kuhn, Garcia-Mila,
Zohar, & Andersen, 1995; Schauble, 1996). For exam-
ple, when children observed the speed of two falling
objects that differed in size or weight, their prior
beliefs that the objects would fall at different speeds
affected both their observations and conclusions from
the data. Thus, after viewing two objects released at
the same time from the same height, many children
claimed that they had observed one object fall faster
than the other, despite the fact that they fell at the
same rate (Chinn & Malhotra, 2002).

Many investigations of children’s data interpreta-
tion have done so within knowledge-rich domains
(e.g., Echevarria, 2003; Metz, 2004). However, chil-
dren often encounter situations about which they
have very limited background knowledge. In these
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situations, data provide a rich source of information
from which to draw conclusions about a phenome-
non. What is not known is whether children attend to
and use particular diagnostic features of data. That is,
given a set of observations, are thereproperties of data
sets—unrelated to knowledge of the domain—that
help reasoners induce trends from data sets without
using formal statistics?

We suggest that two diagnostic features of data
patterns may play an important role in reasoning:
sample size and variability. Sample size refers to the
number of observations within a data set. Considering
the golfing example mentioned previously, someone
using sample size as a factor to assess differences
between two golfers would likely be more confident
about drawing conclusions with more data available
(e.g., three hits per golfer vs. one hit per golfer).
Variability refers to the degree of similarity or dissim-
ilarity among values within and between the set of
observations. Returning to the golfing example,within-
group variability is a measure of differences in the
outcomes of drives made by the same golfer, whereas
between-group variability is ameasure of differences in
drives between golfers. A reasoner using variability
characteristics of data would be more confident of
conclusions drawn from data as the variability with-
in a set of observations decreases and variability
between a set of observations increases.

Reasoning About Data in Category Induction and
Scientific Reasoning Tasks

In category membership tasks, there is evidence
that elementary school children recognize sample size
and variability. Gutheil and Gelman (1997) found that
although adults used variability and sample size in
combination or independently, 8- and 9-year-old
children did not differentiate between sets of exem-
plars that differed only in sample size or in variability
but did differentiate when both sample size and vari-
ability differed between sets. In related work, Jacobs
and Narloch (2001) asked children in Grades 1, 3, and
5 to predict how common a trait would be in a given
population based on a sample that varied in number
(sample size) and homogeneity (within-group vari-
ability). Prior knowledge about variability affected
children’s predictions more than sample size. Strong
prior assumptions about the phenomena in question
influence reasoning about data characteristics.

There is also evidence that children attend to
sample size anddata variability in scientific reasoning
contexts. Piaget and Inhelder (1951/1975) investi-
gated children’s assessments of the probability of
a spinner landing in a series of possible locations. By

middle childhood, children’s judgments about future
landing sites were related to the number of previous
observations, indicating some understanding of sam-
ple size (i.e., the law of large numbers, or the idea that
larger sample sizes make one more confident about
generalizing to a population). Klaczynski and Aneja
(2002) also demonstrated that children as young as 7
years old applied the law of large numbers in infer-
ring new gender stereotypes by beingmore confident
when shown a larger sample than a small one.

A very common scientific reasoning task involves
drawing conclusion based on the evaluation of co-
variation data (e.g., Koerber, Sodian, Thoermer, &
Nett, 2005; Kuhn,Amsel, &O’Loughlin, 1988; Shaklee
& Paszek, 1985). Interpreting covariation data is also
influenced by data characteristics. Koslowski, Oka-
gaki, Lorenz, and Umbach (1989) asked sixth-grade,
ninth-grade, and college participantswhether a target
factor was likely to cause a particular effect (e.g.,
whether using a gasoline additive leads to worse gas
mileage). Information presented to participants var-
ied in sample size and in whether there was evidence
of covariation. Without covariation information, all
participants differentiated between large and small
sample sizes; however, with covariation information,
only the college students used sample size information.
Thus, there is evidence that sixth and ninth graders
have some difficulty integrating multiple character-
istics of the data. At the same time, even sixth graders
can use sample size in the absence of other informa-
tion to infer cause. Koslowski (1996, Experiment 10)
also reported that whenmore instances of covariation
were present, participants weremore likely to rate the
association between two variables as causal than
when there was only one instance of covariation.

Children also attend to variability within and
between data sets. When second and fourth graders
rolled two balls down two ramps and measured the
distance each traveled, they distinguished between
the small differences expected in individual data
points (within-group variability) and larger differ-
ences expected between groups (between-group var-
iability; Masnick & Klahr, 2003). The expectation that
there will be some variation in precise data points
indicates an understanding that many factors affect
the outcome of an experiment, even when these small
differences may not affect overall conclusions.

Yet, there is evidence that children have difficulty
understanding what this variability indicates. Lubben
andMillar (1996) showed11-, 13-, and15-year-olds two
sets of resultswith equalmeans but different amounts
of variation. Participants were asked whether one set
of resultswasmore trustworthy or if theywere equally
trustworthy.About half (47% – 55%) of all participants
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said that one data set was more trustworthy than the
other. However, only about 20% of 11-year-olds
justified their choice by referring to variation in the
data. Forty-four percent of 13-year-olds and 48%
of 15-year-olds justified their choice by referring to
variation in data, indicating an understanding that
data variability is a component of assessing reliability
(Lubben & Millar, 1996). Thus, even into high school,
a sizable number of students have difficulty using
variability information in drawing conclusions.

Studies of covariation detection, in effect, ask par-
ticipants to assess an ‘‘intuitive chi-square’’ estimate:
How likely is it that the observedpatternof frequencies
occurredby chance?Althoughmuchof the research on
the evaluation of evidence has taken the form of
covariation matrices concerning the frequency of the
presence and absence of putative causes and effects
(i.e., an intuitive chi-square, as in Shaklee & Paszek,
1985), in both real-world contexts and the science
classroom, children must evaluate the differences in
a range of quantitative data. Zimmerman (2000) noted
that to determine if a specific antecedent is linkedwith
an outcome, one compares the number of times the
outcome occurs or does not occurwhen the antecedent
is present. If the former is much larger than the latter,
one can generally conclude that there is a relationship
between the two. However, she observed that ‘‘it is not
clear how large the difference must be in order to
conclude that the two events are related’’ (p. 115).
The question is then, How do students reason when
comparing sets of quantitative data?

In addition to the evidence that elementary and
secondary school children attend to features of data in
some contexts, there is also evidence that very young
children have some fundamental understanding
of relative quantity. Even 6-month-old infants can
accurately compare two quantities (see Feigenson,
Dehaene, & Spelke, 2004, for a discussion), and 5-year-
old children are equally adept at determining which
quantity is larger when presentedArabic numerals or
arrays of dots (Temple & Posner, 1998). Thus, it seems
possible that some of the skills required for effective
data comparison are implicit and not the result of
direct training. It is possible that children use a rela-
tively automatic process of quantity comparison. We
follow Rubinsten, Henik, Berger, and Shahar-Shalev
(2002) in suggesting that ‘‘automatic’’ refers
to processing that requires no conscious monitoring
after commencing. The process that operates may be
an ‘‘intuitive’’ statistical test on data patterns. We use
the term ‘‘intuitive’’ to convey the automaticity of the
process.

Clearly, comparing sets of data requires processing
beyond that of simply detecting differences in mag-

nitude. A second set of processes is needed to process
exact differences (e.g., perform calculations), to exam-
ine characteristics of data, and to integrate this
information with domain knowledge. Inhelder and
Piaget (1958) suggested that a pattern of fixating on
one feature instead of looking at features in concert
was the source of young children’s difficulty in
solving conservation tasks. If children do focus ini-
tially on a small number of features, then we would
expect to see age-related increases in the number of
characteristics to which they attend. Additionally,
children would likely develop the ability to compare
sets along multiple dimensions before they could
explicitly access knowledge to consider each variable
independently within the set. It is likely that these
improvements are due to many factors including
acquisition of new strategies, increases in domain
knowledge, and increases in processing capacity
(Halford, Cowan, & Andrews, 2007).

Present Study

To our knowledge, there has been no systematic
investigation of the characteristics of data to which
children attend and to what extent these character-
istics influence their judgments about phenomena.
The present study was designed to examine which
characteristics of data guide inferences when com-
paring data sets. First,wepredicted that sample size is
likely to play an important role in reasoning. Second,
we predicted that in drawing conclusions about
comparative data, two characteristics that indicate
the amount of variation in the data are key: within-
groupvariability (i.e., the variability of the data points
relative to mean) and between-group variability (i.e.,
variability of data points in each of two data sets
relative to one another). This information about
variability can be assessed increasingly well with
a larger sample size of data points. Finally, we
predicted that with age, children will become better
at usingmultiple characteristics of data in concert and
will have more explicit understanding of the impor-
tance of these characteristics for making judgments
about quantitative data.

We chose to work with third- and sixth-grade
students to explore developmental changes through
elementary school because past work on reasoning
with data has often examined children in these age
groups (e.g., Gutheil & Gelman, 1997; Inhelder &
Piaget, 1958; Jacobs &Narloch, 2001; Koslowski et al.,
1989), as they become exposed to experimental data in
school. Our pilot data indicated that third graders
were the youngest age group inwhich all participants
could consistently perform our data interpretation
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tasks. A 3-year age difference allows for a large
enough difference to see change if it is apparent. We
chose a college student comparison population
because it is clear that these skills continue to develop
with experience and age.

In two experiments, children and college students
were presented with sets of paired data and asked to
draw conclusions about differences between the sets.
In Experiment 1, data were presentedwith one of two
framing stories that limited the amount of back-
ground knowledge that could be brought to bear in
drawing conclusions about the data. The data pre-
sented varied systematically in number of data points
presented, within-group variability (operationalized
as a dichotomous variable, with two sizes of standard
deviations relative to the mean), and between-group
variability (operationalized as the number of pairs of
data inwhich the data point from the columnwith the
lower mean was higher than the data point from the
column with the higher mean).

When studying reasoning about any topic, it is
important to consider both implicit and explicit
evidence of knowledge used. Nisbett and Wilson
(1977) argued that explicit justifications for behaviors
are often distinct from actual reasons for behavior and
that the salience of a stimulus is the key determinant
of it being used as a justification. Thus, a full under-
standing of the cognitive process involves looking at
both patterns of conclusions drawn from data and
explicit rationales for these patterns. Participant re-
sponses were analyzed to examine how each of the
three characteristics of data (sample size, between-
group variability, and within-group variability) was
used in implicit and explicit reasoning.

Experiment 1

Method

Participants. Thirty-nine third graders (mean age5
9.1 years, range 5 8.2 – 10.3 years), 44 sixth graders
(mean age5 11.9 years, range5 11.2 – 12.8 years), and
50 college undergraduates (mean age 5 20.2 years,
range 5 18.1 – 23.7 years) participated in this study.
College students were recruited from undergraduate
psychology courses, and younger participants were
recruited from letters sent to parents at four elemen-
tary and middle schools in the northeast United
States. The third-grade sample consisted of 92%
White students, 5% Black students, and 3% Hispanic
students. The sixth-grade sample consisted of 82%
White students, 2% Asian students, and 16% Black
students. The college student sample consisted of 54%

White students, 40% Asian students, 2% Black stu-
dents, and 4% Hispanic students.

Procedure. All participants were interviewed indi-
vidually. Participants were randomly assigned to one
of two cover story conditions: one in which robots
were the source of the data and one in which athletes
(people) were the source of the data. In the robot
condition, each participant was read the following
information:

Some engineers are testing new sports equipment.
Right now, they are looking at the quality of
different sports balls, like tennis balls, golf balls
and baseballs. For example, when they want to
find out about golf balls, they use a special robot
launcher to test two balls from the same factory.
They use a robot launcher because they can pro-
gram the robot to launch the ball with the same
amount of force each time. Sometimes they test the
balls more than once. After they run the tests, they
look at the results to see what they can learn.

In the athlete condition, we used an isomorphic
cover story in which two athletes were trying out for
one slot on a sports team. The coaches asked the
participants to perform certain tasks (e.g., hit a golf
ball as far as possible) to assess which athlete would
be better for the team. For example, participants in the
athlete condition saw the following story: ‘‘Harriet
and Joan are trying out for the soccer team. The soccer
coach asked them to kick a soccer ball four times. The
coach measured how far the soccer ball went each
time it was kicked.’’ This cover story was designed to
see if adding information about a potential source of
variability (human error) would change participants’
responses. Thus, the robot conditionpresenteda cover
story that minimized potential sources of variability,
whereas the athlete condition provided potential
sources of variability.

After reading the cover story, the participants were
shown a series of 14 data sets, one at a time. For each
data set, there were data either for two balls of the
same type, with no distinguishing characteristics
(e.g., Baseball A and Baseball B), or for two athletes,
with no information other than first names (e.g., Alan
and Bill). The 14 balls tested were golf balls, racquet-
balls, basketballs, soccer balls, ping pong balls, foot-
balls, volleyballs, baseballs, tennis balls, marbles,
hockey pucks, kickballs, softballs, and bowling balls.
Participants were randomly assigned to one of two
orders of presentation. There were no order effects;
therefore, results are collapsed across order. In the
athlete condition, different names were used for each
data set to prevent any carryover knowledge effect.
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For eachdata set, therewere one, two, four, or six pairs
of data. Each page contained two columns of data: one
column listing the distance the first ball traveled and
one listing the distance the second ball traveled. (See
Table 1 for specific examples of the different data
characteristics.)

The 14 data sets varied in (a) sample size, (b)
between-group variability (i.e., reversals in which
column’s number was higher), and (c) within-group
variability (i.e., high or low variability relative to the
means). Each participant evaluated 14 comparisons,
with eight trials including no reversed pairs (sample
sizes 1, 2, 4, and 6) and six trials including one or two
reversed pairs (sample size 4 with one reversed pair,
and sample size 6 with one and two reversed pairs).
Half of the trials had high within-group variability,
in which the standard deviation of the data set was
15%– 20% of its mean, and half had lowwithin-group
variability, inwhich the standarddeviation of the data
set was less than 2% of its mean. Each of the 14 trials
tested a different type of sports ball.

For each data set, participants were asked first what
the engineer or coach could find out as a result of this
information and to explain any reasons for their
answer. Next, they were asked how sure they were
about these conclusions.To answer thequestions about
sureness, participantswere offereda 4-point scale from
which to select their answer, choosing among not so
sure, kind of sure, pretty sure, and totally sure.

Measures. For each question in which participants
were asked to report their conclusions and predic-
tions, and their confidence in their answers, partici-

pants first answered yes or no and then rated their
confidence on a 4-point Likert scale. These two
responses—yes – no and sureness level—were com-
bined into a single 7-point ordinal variable: totally sure
there is a difference, pretty sure there is a difference, kind of
sure there is a difference, not so sure (regardless of yes or
no answer), kind of sure there is no difference, pretty sure
there is no difference, totally sure there is no difference. Past
research has demonstrated that the children as young
as 8 years old have been able to understand and work
with such a scale (Masnick & Klahr, 2003). Partici-
pants were asked to provide reasons for their initial
conclusions and final predictions of relative position.
These reasons were coded for mention of data char-
acteristics (such as sample size or variability) or
mechanism (such as a property of the ball that could
have affected the results).

Results

The main research question was whether different
types of data patterns and different contexts affect
participants’ decisions about, and confidence in, their
judgments of whether there is a difference between
the two groups of data presented. Decisions about
whether the data sets differed were operationalized
by participants’ responses to whether they thought
the engineer or coach could be sure that there was
a difference between the two groups. In addition,
participants’ reasons for the responseswere analyzed.

Use of data characteristics to judge whether there was
a difference between the data sets. For each assessment,
sample size, between-group variability (number of
reversed pairs), andwithin-group variability (spread)
were within-subjects variables, and cover story was
a between-subjects variable. There were no gender
differences. In addition, for the college students, there
were no differences in ratings for thosewho had taken
different numbers of statistics classes. Thus, these two
variables were not considered in later analyses.
Because the data were not set up in a full factorial
design, each data characteristic was analyzed sepa-
rately. Of those who said that one ball traveled farther
than the other, third graders were accurate in stating
which ball went farther 92.4% of the time, sixth
graders were accurate 98.8% of the time, and college
students were accurate 99.5% of the time.

A 4 (sample size: 1, 2, 4, or 6) � 3 (age: third grade,
sixth grade, or college) � 2 (cover story: robot vs.
athlete) mixed analysis of variance (ANOVA) was
used to assess whether sample size influenced confi-
dence judgments in cases with no between-group
variability. Therewas amain effect of sample size, F(3,
120)5 20.68, p, .001, partial g25 .34; a main effect of

Table 1

Examples of Data Sets in Experiment 1

Example 1: Six data pairs with one reversed data pair (five of six

times Basketball B goes farther), high within-group variability,

robot condition

Basketball A Basketball B

56 ft 74 ft

65 ft 83 ft

75 ft 57 ft

49 ft 66 ft

48 ft 67 ft

64 ft 82 ft

Example 2: Two data pairs with no reversed pairs, low

within-group variability, athlete condition

Joan Harriet

372 ft 383 ft

363 ft 374 ft
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age, F(2, 122) 5 44.52, p , .001, partial g2 5 .42; no
main effect of cover story, F(1, 122)5 0.70, p. .1; and
a Sample Size�Age interaction, F(6, 240)5 17.63, p,
.001, partial g2 5 .31 (Figure 1). Tukey’s honestly
significant difference (HSD) post hoc tests indicated
that college students’ ratings were significantly lower
on average than the third and sixth graders’. College
students’ sureness ratings increased dramatically with
sample size, F(3, 44)5 50.59, p, .001, partial g25 .78,
and sixth graders’ ratings increased a small but signif-
icant amount with increased sample size, F(3, 38) 5
3.33, p 5 .030, partial g2 5 .21. Third graders, in
contrast, showed a slight trend of decreased sureness
ratings with increased sample size, F(3, 34)5 2.26, p5
.099, partial g2 5 .17. There were no interactions with
the cover story. In sum, at all age levels, itwas apparent
that participants were sensitive to differences in sam-
ple size. For sixth graders and college students, this
observation tended to increase ratings of sureness; for
third graders, it tended to decrease ratings.

In addition to sensitivity to sample size, we also
explored sensitivity to the presence of reversed data
pairs (between-group variability) by examining only
the data sets with six pairs of data. This pattern
occurred when there were no reversed data pairs,
one reversed pair, and two reversed pairs. A 3
(between-group variability: zero, one, or two pair
reversals) � 3 (age: third grade, sixth grade, or
college) � 2 (cover story: robot vs. athlete) mixed
ANOVA demonstrated no effect of cover story, F(1,
123) 5 0.56, p . .1. There was a main effect for
between-group variability (lower sureness ratings
with more variability), F(2, 122) 5 53.15, p , .001,
partial g2 5 .47; a main effect for age (higher average
ratings for third graders than for sixth graders and

college students), F(2, 123)5 9.59, p, .001, partial g2

5 .14; and a Variability �Age interaction, F(4, 244)5
4.70, p 5 .001, partial g2 5 .07 (Figure 2). At all age
levels, participants’ mean sureness ratings decreased
with more reversed data pairs between the two
groups of data, with the effect stronger with increas-
ing age: for third graders, F(2, 34) 5 3.51, p 5 .041,
partialg25 .17; for sixth graders, F(2, 40)5 14.42, p,
.001, partial g25 .42; and for college students, F(2, 46)
5 68.15, p , .001, partial g2 5 .75.

We also assessed differences in within-group var-
iability (data spread) on ratings of confidence that
there was a difference between the two data sets.
Participants saw two data sets with each sample size
and between-group variability combination used
(e.g., two data pairs with no reversed pairs; six data
pairs with one reversed pair). One of these data sets
had high within-group variability (standard devia-
tion between 15% and 20% of mean) and one had low
within-group variability (standard deviation less
than 2% of mean). We calculated a paired t test for
each sample size/between-group variability combi-
nation participants saw (directly comparing sureness
ratings from data with high and low within-group
variability). Third and sixth graders showed no
evidence of differentially rating data sets based on
within-group variability. College students had an
inconsistent pattern, in which three of the six compar-
isons reached significance (for four pairs with no
reversed pairs, for six pairs with one reversed pair,
and for six pairs with two reversed pairs). Surpris-
ingly, in each of these comparisons, participants were
more sure in the case with higher variability. Possible
explanations for this pattern are proposed in the
Experiment 1 Discussion section.
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Figure 1. Experiment 1: Participants’ sureness ratings at each grade
with one, two, four, and six pairs of data but no reversed data pairs
(collapsed across cover story).
Note. Error bars represent standard error of measurement.
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Figure 2. Experiment 1: Participants’ sureness ratings at each grade
with six pairs of data, by level of between-group variability in the
data (collapsed across cover story).
Note. Error bars represent standard error of measurement.
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When people evaluate differences between sets of
data, they do not focus on only one characteristic. For
example, in computing formal statistics, a t statistic
takes account of both sample size and variability
when testing for significant differences between
means. The next analysis explored the possibility that
our participants used an ‘‘intuitive t test’’ in which
a combination of the number of data points and the
variability of the data points were both considered in
evaluating differences between means. Although
these are small data sets, we calculated the indepen-
dent t-test statistic for each set of data presented to the
participants to examine the trends (with the obvious
exception of the two sets with one pair). These 12 t
values ranged from 0.88 to 4.18. Next, we correlated
the t statistics for the presented data with the mean
sureness rating participants gave assessing whether
therewas a difference between the two sets of data, by
grade.An interesting pattern emerged. Third graders’
ratings were not significantly associated with the in-
dependent t statistic (r5 .388, p5 .213), sixth graders’
ratings showed evidence of a strong relationship (r5
.632, p5 .028), and college students showed evidence
of a very strong relationship (r 5 .873, p , .001).

Reasons offered. Participants offered explicit justifi-
cations for confidence or lack thereof in their con-
clusions and for the predictions they made about
which ball would go farther on a subsequent trial.
Reasons given were coded for mention of the manip-
ulated data characteristics: (a) sample size, (b) between-
group variability (whether the data sets included pair
reversals or not), and (c) within-group variability
(spread of the data). We also noted mention of (d)
a trend in the data and (e) the magnitude of the
difference between the two data sets. Additionally,
explanations of how the outcome could have occurred
were coded, including (f) a property of the ball that
affected the results, (g) a property of the robot or
athlete that affected the results, or (h) a property of the
environment—other than the ball, robot, or athlete—
that affected the results. The categories were not mu-
tually exclusive, and participants had 28 opportuni-
ties to explain their reasoning (twice for each of the
14 data sets). Participants’ responses were coded by
two independent coders, whose agreement level was
85%. All discrepancies were resolved via discussion.

Table 2 presents a summary of these results. An
overwhelming majority of the responses were in
reference to the data and not to theoretical issues such
as properties of the ball or robot/athlete. Many
participants mentioned the specific data character-
istics that were manipulated, including sample size
(e.g., ‘‘They only tested it two times so they can’t really
be sure’’), between-group variability characteristics

such as reversed pairs (‘‘All but once A went farther
than B’’) or no reversed pairs (‘‘Awent farther than B
every time’’), and within-group variability character-
istics such as variability within the column (‘‘All the
numbers in A are close together’’).

In addition, other characteristics not manipulated
were also mentioned. The most frequently men-
tioned data characteristic was a trend in the data
(e.g., ‘‘Five out of six times Awent farther’’; ‘‘B went
farther most of the time’’). Some third graders (23%)
explicitly referred to only one pair of the data set,
effectively ignoring the remaining data in their
justifications; we called this type of response a ‘‘sin-
gle-pair trend.’’ No sixth graders or college students
justified their reasoning this way. Another data
characteristic mentioned was the magnitude of dif-
ferences between the two columns of data (e.g., ‘‘A
went much farther than B’’). In general, college
students used a much wider range of responses than
younger children, with nearly all of themmentioning
sample size at least once. However, all participants,
with the exception of 2 third graders, mentioned at
least one data characteristic at some point during the
study.

In addition to discussions of data, we also explored
whether participants offered causal or mechanistic
explanations as justifications for their conclusions
(Table 2). We coded explanations for a mention of
characteristics of the robot (e.g., ‘‘Maybe the robotwas
breaking down after it threw Ball A’’), characteristics
of the athlete (e.g., ‘‘Maybe Person A was having
a good day’’), characteristics of the ball (e.g., ‘‘Maybe
Ball Bwasmore aerodynamic’’), and characteristics of

Table 2

Experiment 1: Percentage of Participants at Each Age Who Mentioned

Each Justification for Their Sureness

Third grade Sixth grade College

Data responses

Sample size** 10 39 100

Reversed pairs* 56 70 90

No reversed pairs** 8 14 62

Spread of data** 3 15 44

Overall trend in data 92 93 100

Single pair ‘‘trend’’** 23 0 0

Magnitude of differences** 46 89 92

Magnitude of single pairs 5 2 0

Mechanism responses

Ball property 15 20 18

Robot/athlete property 41 37 30

Environment 3 2 2

Note. Age differences: *p , .05. **p , .01.
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the environment (e.g., ‘‘Maybe there was wind blow-
ingwhenBallAwas being thrown’’). Across all trials,
about half of the participants mentioned at least one
mechanistic explanation, with no age differences
(51% of third graders, 56% of sixth graders,
and 42% of college students mentioned such an
explanation).

One area inwhich a cover story differencemight be
expected is in use of these mechanistic justifications.
Indeed, use of these mechanistic justifications did
vary considerably by condition: Sixty-two percent of
participants in the athlete condition said that a prop-
erty of the athlete was a reason for at least one
outcome, whereas 10% of those in the robot condition
suggested a property of the robot as a reason for an
outcome at least one time, v2(1,N5 133)5 38.19, p,
.001. In contrast, 6% of participants in the athlete
condition and 29% of participants in the robot condi-
tion suggested a property of the ball as a potential
explanation for the outcome at least one time, v2(1, N
5 133) 5 12.16, p , .001. Mentions of other environ-
mental mechanisms such aswind only occurred three
times, twice in the robot condition and once in the
athlete condition.

Discussion

When sample size, between-group variability, and
within-group variability were manipulated, we
found that sample size and the between-group vari-
ability influenced participants’ reasoning but that
within-group variability had no clear effect. In addi-
tion, older participants were able to make more
accurate distinctions between data sets, indicating
better knowledge of data characteristics individually
and in concert. Children were also able to talk about
data characteristics as early as in the third grade,
demonstrating an early recognition of the importance
of these concepts, but there were significant age-
related increases in the number of data characteristics
described in their explanations.

Although prior research indicates sensitivity to the
law of large numbers at as early as age 7 (e.g.,
Klaczynski & Aneja, 2002), only college students
indicated a clear appreciation of the law of large
numbers by increased confidence ratings with
increased sample size. Sixth graders showed a mixed
pattern, and a sizeable number of third graders were
less sure about conclusions when there were more
data points—though this result does suggest sensi-
tivity to the number of data points presented. These
students may still be looking for a single correct
answer and find multiple data points to be more
confusing than informative.

In addition, there is evidence that in all three age
groups, children pay attention to between-group
variation in the data, one of the more complicated
statistical concepts. Between-group variability in data
is clearly salient to children even when the data are
not couched in a strong theoretical context. Though
this concept is relatively difficult in formal statistics, it
may be implicitly provided by the presentation for-
mat of the data itself. For example, when scanning
numbers presented in lists, when all numbers are
visible simultaneously, and recall is not being tested,
children may encode information about variability
while encoding the values themselves. Thus, with
age-related increases in processing capacity and
speed as well as more optimal strategy use (e.g.,
Gathercole, Pickering, Ambridge, & Wearing, 2004;
Kail, 2007), participants showed improvement in their
ability to use information about sample size and
between-group variability and to use the character-
istics together in the form of an intuitive t test.

Participants did not seem to respond to changes in
within-group variability, our manipulation of the
standard deviation relative to the mean, though
college students showed a small trend toward being
more sure in cases with greater variability. It is
possible that this characteristic was simply not salient
or believed to be important and thus did not influence
most responses. It is also possible that the lack of effect
for children, and small reverse effect for college
students, occurred because variability was con-
founded with data magnitude, such that the data
with low variability relative to the mean consisted
entirely of three-digit numbers,whereas the datawith
high variability relative to themean consisted entirely
of two-digit numbers. This confoundingmayhave led
to college participants simply rating themselves as
more confident when reasoning about two-digit
numbers instead of the more challenging three-digit
numbers. In addition, with small sample sizes, the
spread of the data may have been less noticeable.

One of our more intriguing findings was that
participants appear to become increasingly adept
with age at performing intuitive t tests on the data
sets, that is, in using the data characteristics in concert.
The lack of association of third graders’ ratings with
the t-test values of the data sets may be due to their
consistently high confidence ratings.However, for the
older participants, it indicates that even when partic-
ipants were not systematically using the individual
characteristics, they were able to use them together to
draw conclusions, regardless of their level of explicit
access to this information. The fact that the college
students showed a small trend in being more confi-
dent with increased within-group variability while
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demonstrating strong evidence of drawing conclu-
sions closely aligned with t-test results may indicate
that for these data sets, the overall within-group
variability was relatively small (even with our high-
variability manipulation). Therefore, reasoning that
focused on sample size and between-group variabil-
ity may have been a reasonable way to draw con-
clusions about these data.

The participants not only used data characteristics
in drawing conclusions but also justified their con-
clusions explicitly. In doing so, nearly every par-
ticipant mentioned at least one data characteristic,
though the college students referred to a wider range
of characteristics and referred to these characteristics
more frequently. The third graders appeared to be
much less explicitly aware of concepts such as sample
size and within-group variability, and the majority of
their data-related comments were about trends in
the data. Nonetheless, about half of the third graders
referred to between-group variability and about half
referred to the magnitude of differences between
groups. The mention of these characteristics at all
at such a young age indicates an early awareness
that these features are important ones to consider in
drawing conclusions from data.

In addition to the data features, even when we set
up a situation with no clear mechanistic explanation,
about half of the participants at each age brought their
backgroundknowledge to bear andmentionedpoten-
tialmechanisms for the results thatwere not explicitly
mentioned in the cover stories. Therefore, all students
did not evaluate the data in a theory-neutral way. For
some, predictions appealed to patterns in the pre-
vious data sets. For other students, predictions ap-
pealed to theoretical reasons for why such patterns
were found.

One possible limitation of this study is that the
presentation of data might have influenced reasoning
by either providing too much information at once or
guiding interpretation. Format of problem presenta-
tion has been shown to affect children’s ability to
solve math problems (e.g., Klein & Bisanz, 2000). If
this amount of information exceeds processing limits,
participants might use nonoptimal strategies for
analysis. For example, instead of comparing the entire
range of data at once, participants might draw a con-
clusion from the last set of numbers alone, ignoring
the remaining data. In addition, for each trial in
Experiment 1, participants were presented two data
sets and asked to compare them. By presenting the
data in this way, it is possible that participants would
only compare pairs of data points instead of compar-
ing the entire columns of data. To examine these
issues, we conducted a second experiment.

Experiment 2

In the follow-up experiment, we explored how style
of data presentation might influence children’s and
adults’ conclusions.Wemade several specific changes
to the methodology from Experiment 1. We changed
the data presentation style so that the data were
presented incrementally instead of simultaneously.
This change in presentation allowed us to reduce the
information processing burden and to compare the
effect of presentation style on participants’ processing
of the data. Specifically, we wanted to explore
whether the change from simultaneous to paired
presentation would highlight different data charac-
teristics (e.g., sample size) and obscure others (e.g.,
between-group variability). In addition, would a pre-
sentation format that prevents direct paired compar-
ison lead to differences in reasoning about data
characteristics? If understanding of data character-
istics is robust, then the presentation format should
have a minimal effect on using the characteristics to
draw conclusions. However, if participants were only
looking at subsets of the data, then we would expect
the pairwise condition to lead to more confidence in
evaluations derived from smaller samples. If partici-
pants were relying on individual pairwise compari-
sons as part of their reasoning, then the pairwise
condition would likely lead to reasoningmore clearly
based on between-group variability than the column
condition, in which the opportunities for such com-
parisons were limited. We also predicted that the two
formats would lead to increased attention to the data
characteristics, particularly to sample size, as the fea-
ture that most obviously changed between iterations.

We made other minor modifications in response to
observations of participants in Experiment 1. We
wanted to find out how likely participants were to
want the engineers to test the balls again, an assess-
ment of whether participants believed that they
needed additional data to draw a conclusion. From
the Experiment 1 cover story, one could argue that
there is always a reason to be conservative in con-
clusions and state that there is not really evidence for
a difference (a bias toward a Type II error rather than
Type I error). Therefore, we modified the cover story
to indicate more clearly that there are costs to being
wrong in either assuming that balls go the same
distance when they do not or assuming that they do
not when in fact they do. This change was to reduce
the possibility of participants suggesting simply pro-
ducing and testing more balls without first consider-
ing the available data.

In addition, we changed some of the specific
questions to be more explicit about exactly what we
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were looking for. In Experiment 1, we asked partic-
ipants what the engineer had learned from testing,
and nearly all participants gave answers about which
ball went farther. If they did not, the experimenter
probed for that answer directly. In Experiment 2, we
changed the question to ask explicitlywhich ballwent
farther.

Finally, we added a practice problem that included
three presentations of data and one reversed data pair
to familiarize all participants with the nature of the
task. The practice problem served to introduce par-
ticipants to the notion that theywould be seeingmore
data after the first trial and also that pair reversals in
the data sometimes occur.

Method

Participants. Twenty-two third-grade students
(mean age 5 9.0 years, range 5 8.2 – 10.6 years), 29
sixth-grade students (mean age5 11.9 years, range5
11.1 – 13.8 years), and 50 undergraduate students
(mean age 5 19.8 years, range 5 17.8 – 23.6 years)
participated in this study. None of these students
participated in Experiment 1. The children were
students in two elementary schools and two middle
schools in the Northeast United States. The third-
grade sample consisted of 54% White students, 21%
Asian students, 18% Black students, and 9%Hispanic
students. The sixth-grade sample consisted of 56%
White students and 44% Black students. The third-
and sixth-grade students were from different regions
in the same metropolitan area than those who partic-
ipated in Experiment 1. The college student sample
consisted of 62% White students and 38% Asian
students.

Procedure. Because therewere no differences in the
main conclusions drawn based on cover story, all
participants in Experiment 2 were shown the robot
cover story used in Experiment 1, with following
paragraph added:

It’s very important that the engineers can find out
whether the balls are the same or different. Only if
the balls are the same and go the same distance can
the factory sell themtomakemoney. If theyaren’t the
same then the engineers need to remake the balls,
which is expensive and time-consuming. So the
engineers need your help in looking at the results
anddeciding if they canbe surewhether the balls are
the same or different.

Participants were presented with three data sets,
each with a different ball type, in one of two pre-
sentation formats. The three data sets were identical

to those used in Experiment 1, and each included six
pairs of data. One set had no reversed pair, one had
one reversed pair (the third data pair was greater in
Column B than in Column A), and one had two
reversed pairs (the second and fifth data pairs were
greater in Column A than in Column B). The order of
presentation was counterbalanced using a Latin
Square design, such that one third of the participants
in each age group saw each data set first. All the data
used in this study were from the high-variability
(two-digit) condition from Experiment 1, as we found
no clear effect of within-group variability on reasoning.

In the pairwise condition, participants saw data
presented in two columns. First, theywere shown one
pair of data points, then two pairs, then four pairs,
and then six pairs. After each presentation of data,
participants were asked if there was a difference
between the two balls, how sure theywere of whether
there was a difference and why, and whether they
thought that the engineers should test the balls again.
Examples of this condition are shown in Table 3.

Table 3

Example of Data Sets in Experiment 2

Examples of presentation formats shown to participants in the

pairwise condition

Basketball A Basketball B

74 ft 56 ft

Basketball A Basketball B

74 ft 56 ft

83 ft 65 ft

Examples of presentation formats shown to participants in the

column condition

Tennis Ball A Tennis Ball B

49 ft 64 ft

40 ft

39 ft

51 ft

50 ft

38 ft

Tennis Ball A Tennis Ball B

49 ft 64 ft

40 ft 52 ft

39 ft

51 ft

50 ft

38 ft
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In the column condition, participants saw six data
points in one column and one in the other column.
Theywere asked the samequestions as in the pairwise
condition and were then presented with additional
data points in the second data column (one, two, four,
and six data points at a time). This condition was
included to see if reasoning changes when pairwise
comparisons are less salient. Examples of this format
are shown in Table 3. Questions asked in both formats
were identical, with no explicit mention of the format
in the questions.

Results

Judgments of whether there was a difference between the
data sets. As in Experiment 1, responses—yes – no
and sureness level—were combined into a single 7-
point ordinal variable. Because there was no direct
assessment of whether participants believed that the
ball in ColumnA or Column Bwent farther, therewas
no accuracy measure. Participants stated only
whether they thought that there was a difference
between the two variables.

To examine the effect of sample size alone, we
examined the data set in which reversed pairs were
not included. Thus, we compared judgments of
whether there was a difference between data sets
when participants saw one, two, four, or six pairs of
data or one column with six data points and a second
with one, two, four, or six data points. These data
points were all presented in the same scenario, and
data points in one column were always larger than
those in the other column. We found that sample size
influenced participants’ assessments of differences
between the data sets. Age and condition were
between-subjects variables, and sample size was
a within-subjects variable. A 3 (age: third grade, sixth
grade, or college)� 2 (condition: pairwise vs. column)
� 4 (sample size: 1, 2, 4, or 6) mixed-model ANOVA
was performed. We found no significant effect of age,
F(2, 95)5 1.73, p. .1; no effect of condition, F(1, 95)5
1.14, p. .1; and a significant effect of sample size, F(3,
93)5 4.52, p5 .005, partialg25 .13. Therewas also an
Age � Sample Size interaction, F(6, 186) 5 3.87, p 5

.001, partial g2 5 .011. Simple effects analysis to
understand the nature of the interaction indicate that
college students demonstrate a large, significant
increase in sureness with increasing sample size in
the pairwise condition, F(3, 21)5 7.40, p5 .001, partial
g25 .51, and in the column condition, F(3, 23)5 17.37,
p , .001, partial g2 5 .53, but that third and sixth
graders do not (Fs , 1.0). In addition, there was
a significant Sample Size � Condition interaction,
such that the paired condition leads to a linear trendof

increasing sureness ratings with increased sample
size, whereas the column condition does not, F(3,
93) 5 4.97, p 5 .003, partial g2 5 .14. See Figure 3 for
means for each age and sample size, by condition.

Between-group variability also influenced assess-
ments of differences between data sets. The ratings of
whether therewas a difference between groups on the
sixth trial (when all data had been presented) were
compared across stories in a mixed-model ANOVA.
Each participant saw one story with no reversed pair,
one with one reversed data pair, and one with two
reversed data pairs. A 3 (age: third grade, sixth grade,
or college) � 2 (condition: pairwise vs. column) � 3
(between-groupvariability: zero, one, or two reversed
data pairs) ANOVA was performed. We found no
effect of age, F(2, 95) 5 0.74, p . .1; an effect of
condition, F(2, 95) 5 5.59, p 5 .020, partial g2 5 .06;
and an effect of between-group variability, F(2, 94) 5
12.60, p , .001, partial g2 5 .21. On average, there
were higher ratings of a difference in the pairwise
condition and higher ratingswith less between-group
variability (i.e., with fewer reversed pairs). There was
also a significant Age � Between-Group Variability
interaction, F(4, 188)5 3.87, p5 .005, partial g2 5 .08.
Examining the Age� Variability interaction, only the
college students reduced their sureness ratings con-
siderably when there was more between-group var-
iation, in both the pairwise condition, F(2, 22)5 18.94,
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Figure 3. Experiment 2: Participants’ sureness ratings at each grade
with one, two, four, and six pairs of data but no reversed data pairs
(by presentation format).
Note. Error bars represent standard error of measurement.
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p , .001, partial g2 5 .63, and the column condition,
F(2, 24) 5 20.61, p , .001, partial g2 5 .63. There was
a trend toward an interaction between age and
condition, such that college students were more sure
in the column condition, but third and sixth graders
were more sure in the pairwise condition, F(2, 95) 5
2.37, p 5 .099, partial g2 5 .05. The mean sureness
ratings are presented in Figure 4 and indicate a clear
pattern of decreased sureness ratings with increased
variability in college students across both conditions.

As in Experiment 1, we calculated t tests for each
set of data participants saw. In the pairwise condition,
the t values ranged from 0 to 3.98. For this condition,
we again found evidence of a strong association in
college students between average sureness ratings
and t statistics (r 5 .924, p , .001). Third graders
exhibited a similar pattern (r 5 .685, p 5 .042). Sixth
graders did not demonstrate a clear association (r 5
.484, p 5 .177). In the column condition, a different
pattern emerged. These t values also ranged from 0 to
3.98, but only the college students showed any evi-
dence of using this information systematically. Col-
lege students’ confidence in the difference between
groups was very closely matched to actual t statistics
(r5 .906, p5 .001). In contrast, third and sixth graders’
ratings showed no evidence of a positive association
between confidence and t statistics (third grade: r 5
�.085, p . .5; sixth grade: r 5 .035, p . .5).

Reasons offered. To classify explanations for reason-
ing,we beganwith the same codes as in Experiment 1.
Two coders independently coded each set of explan-
ations. The overall agreement level was 86.3%, and all
discrepancies were resolved through discussion.

The pattern of explanations offered was similar to
that in Experiment 1, with large grade effects. How-

ever, there were some key differences between the
patterns of responses offered in Experiments 1 and 2.
The frequencies of participants mentioning each
explanation are summarized in Tables 4 and 5. The
incremental data presentation led to more frequent
mentions of data characteristics such as sample size
(e.g., ‘‘The engineer should test again to get more
data’’; ‘‘Don’t need to test again because we already
have a lot of data’’), suggesting that this format
increased the salience of this characteristic. In Exper-
iment 1, only 10% of third graders and 27% of sixth
graders mentioned sample size. However, when di-
rectly comparing data sets with increasing data,
40% of third graders and 71% of sixth graders
mentioned sample size in the pairwise condition,
whereas 33% and 47%, respectively, did so in the
column condition. Nearly all college students men-
tioned sample size. In discussing variability, mention
of reversals or lack thereof was more common in the
pairwise condition across all age groups. Mention of
spread was similarly uncommon for third and sixth
graders in the column condition as in Experiment 1
(8% and 13% as compared to 3% and 15%, respec-
tively), and not a single third or sixth grader referred
to spread in the pairwise condition.

Participantswere asked to reason about all the data
available in each scenario. However, as noted earlier,
we found some participants explicitly stating that
they only were referring to a single pair of data points
in drawing conclusions. In Experiment 1, only 23% of
third graders and 1 sixth grader ever clearly referred
to a subset of the data in justifying answers. In
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Figure 4. Experiment 2: Participants’ sureness ratings at each grade
with six pairs of data, by level of between-group variability in the
data and presentation format.
Note. Error bars represent standard error of measurement.

Table 4

Experiment 2: Percentage of Participants at Each Age Who Mentioned

Each Justification for Their Sureness, in the Pairwise Condition

Third grade Sixth grade College

Data responses

Sample size** 40 71 100

Reversed pairs** 30 57 83

No reversed pairs* 30 64 83

Spread of data 0 0 21

Overall trend in data 100 93 100

Single pair ‘‘trend’’** 80 43 13

Magnitude of differences** 20 64 88

Magnitude of single pairs* 30 57 17

Inference** 30 43 88

Mechanism responses

Ball property 20 36 21

Robot/athlete property* 40 57 13

Environment 0 14 8

Note. Age differences: *p , .05. **p , .01.
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contrast, the incremental presentation formats in
Experiment 2 led many more participants to reason
this way. As shown in Tables 4 and 5, many partic-
ipants in all age groups referred to a pattern or trend
in a single pair of data points or to the magnitude of
the difference between the two numbers of a single
pair in justifying their conclusions (e.g., after seeing
the final two numbers presented in the column
condition, referring to only these two numbers: ‘‘52
is far away from 40’’; similar patterns occurred after
seeing the last pair in the pairwise condition). In fact,
the only significant age difference in Experiment 2 on
these issueswas in the pairwise condition, where 80%
of third graders, 43% of sixth graders, and 13% of
college students referred to a ‘‘pattern’’ or ‘‘trend’’
based on a single pair of data to justify their responses,
v2(2, N 5 48) 5 14.54, p , .001.

We also expanded the codes used in Experiment 1
to includemore codes for data-based responses. In the
column condition, it was common for participants to
justify their request for more data with a reference to
the fact that the columns were unequal; thus, it was
common for participants to say that they would like
more data in Column B because there was currently
not as much data as in Column A (e.g., ‘‘There’s four
more numbers on A and there still needs to be four
more on B so it will be even,’’ ‘‘You need even
amounts of data’’). Therefore, we noted whenever
participants referred to unequal sample sizes. In
addition, because we asked participants to assess
whether they wanted more data, many participants
used the data to make inferences about whether more

data were needed. We added the code of inference to
account for answers such as ‘‘It’s pretty clear that
they’re different’’ and ‘‘More data will confirm it one
way or another.’’

In addition to discussions of data, we also explored
whether participants offered causal mechanistic ex-
planations as justifications for their conclusions. As in
Experiment 1, we coded explanations for amention of
characteristics of the robot, characteristics of the ball,
and characteristics of the environment.Overall, a little
more than one third of the participants mentioned at
least one mechanistic explanation (e.g., ‘‘Because
while the robot threw the first two balls, he may have
lost some power’’; ‘‘There might be damage or air
leakage in the ball’’), with no significant age differences
(36% of third graders, 45% of sixth graders, and 34%
of college students mentioned such an explanation).

Testing again. In Experiment 2, participants were
asked if they thought the engineers should test the
balls again. If they said yes, they were asked whether
the engineers should test Ball A, Ball B, or both. With
only one data pair, participants asked for more data
93.4% of the time; with two data pairs, participants
asked for more data 90.1% of the time; with four data
pairs, participants asked for more data 71.6% of the
time; and with six data pairs, participants asked for
data 40.9% of the time. The grade breakdown showed
an interesting pattern after all six data pairs were
presented. Third graders wanted to test for more data
about 60% of the time across between-group variabil-
ity levels (zero, one, or two overlaps). Sixth graders
wanted to test for more data about 30% of the time
across levels. College students, however, were most
likely to differentiate among the data sets. Thus,
although only 14% of the college students asked for
more data when there was little between-group
variability, 40% asked for more data when there was
one overlapping pair and 56% asked for more data
when there were two overlapping pairs. See Figure 5
for details.

Discussion

Experiment 2 was conducted to determine if the
relative salience of various data characteristics could
be manipulated by varying presentation format. The
results suggest that presentation did not change the
pattern of explicit reasoning shown in Experiment 1
for college students. The majority of college students
clearly changed their ratings systematically with
sample size. There were no differences in ratings of
sample size based on whether the data were pre-
sented pairwise or in columns, indicating that the
processing of each formatwas comparable for sample

Table 5

Experiment 2: Percentage of Participants at Each Age Who Mentioned

Each Justification for Their Sureness, in the Column Condition

Third grade Sixth grade College

Data responses

Sample size** 33 47 92

Reversed pairs 17 20 46

No reversed pairs** 8 20 69

Spread of data 8 13 35

Overall trend in data 83 87 100

Single pair ‘‘trend’’ 58 53 31

Magnitude of differences** 17 27 85

Magnitude of single pairs 58 47 38

Inference* 8 33 58

Unequal amount of data 50 53 73

Mechanism responses

Ball property 8 27 12

Robot/athlete property 25 20 19

Environment 0 7 15

Note. Age differences: *p , .05. **p , .01.
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size ratings. However, third and sixth graders did not
systematically use sample size when viewing data in
these formats. This finding suggests that presenting
data in this incremental formatmay in fact havemade
it somewhat more difficult for children to systemat-
ically use sample size when data sets they reasoned
about were being updated.

However, the patterns of explicitly discussing
sample size differed from Experiment 1. In Experi-
ment 2, far more participants in the third and sixth
grades talked about sample size as affecting their
judgment. The presentation format increased the
salience of this characteristic enough for many chil-
dren to notice that sample size might play an impor-
tant role. At the same time, incremental presentation
of data led to more frequent references to trends in
single pairs of data or subsets of the data instead of the
whole pattern, though this trend was more pro-
nounced for the younger participants. Because the
task involved adding only one or twodata pointswith
each new trial, it is not surprising that this feature
encouraged more participants to focus solely on
a subset of the data rather than thewhole, particularly
in the pairwise condition.

Assessments of variability were also affected by
data presentation format. College students demon-
strated clear patterns of decreased sureness when
there was more variability in the data, whereas the
responses of younger participants were not as sys-
tematic. In addition, the format changes led to some
differences in the explicit discussion of variability-
related issues. In particular, participants appeared to
be more likely to mention a lack of reversed pairs in
the paired condition than in the column condition or
in Experiment 1.Mention of spread of the data did not
vary significantly by age, but mention of reversed
pairs (or lack thereof) generally did. These findings

suggest that children have a nascent understanding of
variability but one that is not yet fully formed and
applied equally across contexts.

General Discussion

The results of our study demonstrate that (a) children
and adults attended to sample size and between-
group variability when drawing conclusions from
data; (b) there were significant age-related increases
in the detection, use, and explicit awareness of
individual data characteristics; and (c) the data pre-
sentation format affected the use of these character-
istics. This research is the first to specifically examine
the use of data characteristics outside knowledge-rich
contexts and the ways these characteristics affect
reasoning about data.

The framing in Experiment 1 allowed us to present
two conditions (athlete, robot) that provided two
different sources of error variance (e.g., human vari-
ation and robot variation, with the expectation that
robotswere likely to be perceived as less variable than
humans). Although there were more mechanism-
based explanations in the athlete condition than in
the robot condition, therewere fewdifferences in how
the data characteristics of sample size and variability
were interpreted, suggesting that these characteristics
were a source of information separate from domain
knowledge. The fact that nearly every participant
explicitly mentioned at least one data characteristic
in justifying conclusions indicates an awareness of the
importance of the numerical values. At the same time,
Experiment 2 demonstrated that incremental data
presentation led to more explicit reasoning about
different data characteristics. These results suggest
that participants may have difficulty reassessing sets
of datawith incremental additions to the data, even as
these incremental additions make awareness of sam-
ple size more explicit. This pattern may indicate that
initial values are disproportionately weighted rela-
tive to later values, though additional research is
needed to evaluate this possibility. The most salient
difference between presentation formats in Experi-
ment 2 was in reasoning about between-group vari-
ability. In the column condition, participants still
tended to use the characteristic but were slightly less
sure of their conclusions, suggesting that the break
from a focus on pairs often made them reason about
the data set differently. However, when participants
failed to consider the whole data set, they most often
appear to have looked only at the most recently
presented data and commented on a direct compar-
ison on only this subset of the data.
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Figure 5. Experiment 2: Percentage of participants who requested
further testing after six trials, based on between-group variability.
Note. The data are broken down by age.
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The results demonstrate that children’s data evalu-
ations can be influenced by the characteristics of the
data when comparing sets of data. But through what
processes are reasoners making these comparisons?
Though we did not specifically test this model, one
possibility is that a mechanism for magnitude com-
parisonandanexplicit evaluationprocessmaywork in
concert to produce the data interpretation described
previously. Case and Okamoto (1996) provided evi-
dence for a developmental model in which implicit
processing mechanisms provide the foundation for
children’s learning invariousdomains such asnumber
(i.e., central conceptual structures). Initially, develop-
ment is highly constrained by processing limits that in
turn constrain the number of dimensions a child can
process, but as space andknowledge increase, children
can attend to (and simultaneously process) multiple
dimensions. Knowledge becomes increasingly avail-
able for explicit processing and can be extended to
other areas (e.g., knowledge of living things). This
model is one of many that suggest implicit processing
mechanisms working in concert with gradually devel-
oping, explicit processes to account for developmental
changewithin complex domains (e.g., Feigenson et al.,
2004).

Our participants may have compared sets using
approximate means and variances derived from the
data. Though there is no definitive account of numer-
ical estimation, one well-documented explanation
suggests that number is represented by analog mag-
nitudes that contain a proportion of error (as opposed
to exact quantities; Gallistel &Gelman, 2000). There is
evidence that estimating ability develops slowly and
is difficult for many children and even adults (for
discussion, see Siegler & Booth, 2005). Further evi-
dence from recent research with adults suggests that
estimating magnitude may be a general-purpose
mechanism, showing similar patterns across varied
information sources (Barth, Kanwisher, & Spelke,
2003). Although these studies presented data sets in
a one-time comparison (not a series of data points to
be combined later), our results suggest that the same
representational mechanism used to represent and
compare single quantities may represent and com-
pare mean values. Obrecht, Chapman, and Gelman
(2007) provided adultswith a series of product ratings
and found that participants were more confident in
differences as mean differences increased and vari-
ance decreased, as in a t test.

If the process of mean computation is relatively
automatic, then differentiating individual dimen-
sions may require the acquisition of strategies that
allow their identification and representation. Process-
ing capacity (e.g., space, speed) likely plays a large

role in the age-related performance differences
(Gathercole et al., 2004; Kail, 2007). The transforma-
tion from presentation format (e.g., a set of values)
into a different representational format (e.g., rough
mean with error variance) requires sufficient space to
implement these operations (Halford et al., 2007). In
fact, thismay bewhy children attended to sample size
with simultaneous presentation (as in Experiment 1)
but not with incremental presentation (as in Experi-
ment 2). Research on processing capacity (e.g.,
Gathercole et al., 2004) indicates significant differ-
ences inworkingmemory capacity between third and
sixth graders and may help explain the age-related
differences in attending to multiple data dimensions.

In addition, domain knowledge is likely necessary
to identify individual data characteristics. Domain
knowledgeprovides information aboutwhichdimen-
sions may be associated with differences in behavior
or performance. For example, if a professional golfer
drives only 100 yards, most golf fans would ascribe
this outcome to factors other than ability (e.g., wind,
losing balance, losing concentration), whereas the
same drive for a novice golfer might be ascribed to
ability. In the present experiments, the domain knowl-
edge was limited and was therefore only explicitly
used some of the time in justifying conclusions.
Setting the same data in a context in which partic-
ipants have very strong prior theoriesmay have led to
different results and much greater reliance on this
background knowledge (e.g., if we told participants
Golfer A was a professional golfer and Golfer B was
a complete beginner).

Related to domain knowledge is knowledge about
using data themselves, particularly in understanding
the relationship between a sample and a population.
Increasing sample size increases the approximation to
the population under study. Younger children in the
present experiments did not appear to treat data as
samples, as there was little effect of sample size.
Paradoxically, third graders were often more certain
with a single observation than with multiple obser-
vations. Perhaps, a source of young children’s diffi-
culty is an assumption that one observation is
indicative of a population.

The results of this study suggest a prominent role
for data in children’s reasoning. Absent strong back-
ground knowledge, children make use of data as
a source of information. Future research should more
closely examine the influence of processing factors
such as capacity and speed, in addition to varied
representations. Future research should also examine
how children’s use of data (and data characteristics)
might be useful for acquiring knowledge in novel
domains.
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Conclusions

In sum, these findings demonstrate that children
and adults attend to the number and variability of
observations when interpreting data. The results also
demonstrate that the use of these characteristics
improves with age and becomes more explicitly
accessible. Response patterns are consistent with an
intuitive t test, in which reasoners represent and
compare an approximate mean that includes infor-
mation on the variability of observations. With expe-
rience, children better identify the individual
dimensions (e.g., variability), attend to finer distinc-
tions of these dimensions, and increase their explicit
access to this information. Although children’s back-
ground knowledge is an important factor in interpret-
ing data, our results indicate that the characteristics of
the data themselves play a role in how children make
sense of observations.
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